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Metal enolate complexes are key intermediates in catisarbon
bond-forming reactions in both organometallic chemistry and (@) CH,COCH/NI(111)/260K 3 A
heterogeneous catalysis. Enolate ions coordinated to alkali, main i““ T 5%
group, and transition metals are extensively used in well-established 0" Non,
procedures for contemporary organic synthédimolate species
have also been implicated as surface intermediates in the industrially (b) CDLCOCDN(111)/250K 3 i
important process of acetone (GEDCH;) condensation over ¢o, ° &
transition-metal oxide catalysts, largely on the basis of studies O/C\\CDZ
performed on powdered samples of ill-defined surface structure and S S
compositior? Paradoxically, with the exception of preoxidized Ag ‘WWW—‘—‘-WWW
where an enolate species was postul&taittahigh vacuum (UHV) () CHCOCH/N(111)/Qr340K g 2 o8
surface science studies of acetone adsorption on all other metal AR f I - - 8
single-crystal surfaces to date have suggested that the dominant R o’c\\ch o’c\? " ‘:? Io.os%

. . . | I
adsorption states of acetone are that of the intact molecule bonding
to the surface either through the O lone pair electropi$¢Q)— (@) CD,COCDy/Ni(111)/0/340K g gv v
acetone) or via diz bonding of both the carbonyl C and O atoms ¢o, 0, = - 2 o
(7%(C,O)—acetone}.Here we report the first detailed high-resolution ’C\\co, YNt f -
vibrational spectroscopic characterization of stable surface-bound 1§
acetone enolate (GEOCH;,) fragments on a metal single-crystal (€) CHCOCH,COCHYNI(111)/310K e
surface produced by the reaction of either acetone or acetylacetone oH, e 2 8,
(CH,COCH,COCH) with clean and preoxidized Ni(111). The Ao+ 8 2 o
results obtained from reflection absorption infrared spectroscopy R
(RAIRS), isotopic substitution studies, and density functional theory ' v
. . . . . (f) CHyCOCH,COCHy/Ni(111)/C/310K

(DFT) calculations unambiguously fingerprint the surface species
present. & g

RAIRS experiments were performed in a newly built UHV o Sen, T o™
chamber with a base pressure ®2 x 1071 Torr coupled to a : ”LI—I_LI‘ | :
Nicolet Magna-IR 560 FTIR spectrometer with a narrow band MCT 3000 2500 2000 1500 1000
detector. The Ni(111) sample was cleaned by repeated Ar ion Wavenumber (cm’')

sputtering and annealing cycles. O-precovered surfaces were
obtained by dissociative adsorption of On the clean crystal at
320 K, with the O coverages calibrated by RAIRS of the CO post-
dosed surface. produced from corroborative experiments involving acetic acid and

Exposing clean Ni(111) to a saturation dose®(2 L, 1 L=1 acetyl bromide adsorption on preoxidized Ni(111) as shown in the
x 107® Torr s) of CHsCOCH; at 260 K yields absorption bands at ~ Supporting Information. Acetone enolate can also be synthesized
1260, 1353, and 1545 crh (Figure 1a) that are assigned to the on Ni(111) at 310 K using acetylacetone as the precursor molecule
mixed vibrational modes involving essentially the CC stret¢@C), as shown by the presence of the identical trio of absorption bands
CHs; symmetric deformatiods{(CHs), and CO stretch(CO) of a at 1253, 1360, and 1548 crh(Figure 1, e and f). Here clean Ni-
surface-bound acetone enolate species. Repeating the experimer{t.11) yields CO ¢(CO) at 1808 cm?), while preoxidized Ni(111)
with CD3COCD; results in little change in the frequenciess¢EC) gives acetatef(OCO) at 1428 cmt) as byproducts of the surface
and »(CO) but leads to the disappearance of th€CH3) band reaction.
(Figure 1b). The same sets of acetone enolate absorption bands The interaction between acetone and a transition metal can give
are obtained if the Ni(111) surface is precovered with 0.1 rise to a range of products, the most probable ones bgif@)—
monolayers of O prior to dosing the acetone isotopomers at 340 K acetoney?(C,O)—acetoney’(C)—acetyl,n(C)—acetonyl;3(O)—
(Figure 1, c and d). In this case, acetate and CO are also formed,acetone enolate, and bridgipgC,O)—acetone enolate. To distin-
as evidenced by their respective characteristic symmetric OCO guish between these species, calculations utilizing the perturbative
stretchingus(OCO) (1425 cm? for CH;COO and 1415 crmt for Becke-Perdew density functional method have been performed to
CDsCOO) and carbonyl stretchingCO) bands (1808 cni). The predict the vibrational spectra of the energy-minimized structures
acetate absorption bands are identical to those of acetate speciesf a series of model Ni complexes containing these lig&ntise

“To whom correspondence should be addressed. E-mail: chmsimws@ results as shown intht_e Supporting Information clearly demonstrate

nus.edu.sg. that only the computations fgf(O)— andu(C,O)—acetone enolate

Figure 1. RAIR spectra of Ni(111) and Ni(111)/O exposed*0.2 L of
acetone or acetylacetone at the temperatures indicated.
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complexes give rise to a pair ofCC) andy(CO) bands at 1260 decomposes to CO, while on the preoxidized surface, it is scavenged
1264 and 151%1574 cm! that remain essentially invariant on by O to form acetate. The nucleophilic addition of O to the carbonyl
deuteration, plus @{CHs) band that shifts from 13111312 to groups of aldehydes and ketones on transition-metal surfaces is well

1053-1065 cnt?, in full agreement with the RAIRS observatiohs.  documented? and we have observed similar behavior of O on Ni-
The other possible surface complexes can be effectively ruled (111) toward other compounds such as acetaldehyde and acetyl

out on the basis of the current DFT frequency calculations and bromide to produce acetate species.

vibrational spectra of these species on surfaces and in organo- The isolation and identification of acetone enolate on Ni(111)

metallic compounds;(O)—acetone is predicted to havesgCO) is not altogether unexpected, given its implicit role in heteroge-

frequency of 1647 crt, which is in fact observed at 1655 and neously catalyzed acetone condensation reacfitiesinequivocal

1682 cnt! when acetone is dosed on clean and preoxidized Ni- detection in this work is a result of optimization of the adsorption

(111), respectively, below 180 K as shown in the Supporting temperature for its maximum vyield and accountability for the

Information. This vibrational mode has also been detected at 1638, spectroscopic features of all surface species present. The ability to

1670, 1665, and 1690 crhon Pt(111y2Pd(111)* Rh(111)* and generate it from more than one precursor molecule suggests that

Ru(001}9 respectively; and at 16801694 cnt! for a range of several routes may be available for the preparation of surface-

complexes [M((bSO)(n1(O)—acetonegj?" (M = Mn, Fe, Co, stabilized enolate species of a more general nature for synthetic

Ni, Zn, or Cu)® For n%C,O)-acetone, they(CO) frequency is purposes.

predicted to be 1191 cm, which is consistent with that observed Acknowledgment. We acknowledge financial support for this

for complexes such as Tafides)Me;(17(C,O)-acetone) (1200 4 from the National University of Singapore (Grant No. R-143-

cm1)® and W{?(C,0)—acetone)Cl(PMePh), (1230 cnt).10 000-045-112).

However, highery(CO) frequencies have been reported for the ) . )

complex [Os(NH)s(72(C,0)—acetone)}* (1330 cntl),!t as well lSupportlng Inform_atlon Available: RAIR sp_ectra of acgtate and

asy?(C,0)-acetone species adsorbed on Pd(111) (1435t i (O)—a(?etone on Ni(111); computed frgqugnmeg and assignments for

Rh(111) (1380 cmt)* and Ru(001) (1300 crd).d In the case of model Ni complexes (I.DDF). This material is available free of charge

n*(C)-acetyl, the calculated(CO) frequency is 1634 cm, again via the Internet at http://pubs.acs.org.

in excellent agreement with adsorbed acetyl species on a Rh catalyskeferences

surface (1693 cm)!2 and a range of PtX(acetyl)(Pf&tand PdX-
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